87810=2530x^2+5136x

Simple and best practice solution for 87810=2530x^2+5136x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 87810=2530x^2+5136x equation:



87810=2530x^2+5136x
We move all terms to the left:
87810-(2530x^2+5136x)=0
We get rid of parentheses
-2530x^2-5136x+87810=0
a = -2530; b = -5136; c = +87810;
Δ = b2-4ac
Δ = -51362-4·(-2530)·87810
Δ = 915015696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{915015696}=\sqrt{16*57188481}=\sqrt{16}*\sqrt{57188481}=4\sqrt{57188481}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5136)-4\sqrt{57188481}}{2*-2530}=\frac{5136-4\sqrt{57188481}}{-5060} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5136)+4\sqrt{57188481}}{2*-2530}=\frac{5136+4\sqrt{57188481}}{-5060} $

See similar equations:

| 2x+15=3xx4+1 | | -4=2x+7 | | 1/2-5/8x=7/8x7/2 | | -8(x-1)+8=-2x+64 | | 2(y-2)-5y=-3 | | 15m(m+3)=11m-15 | | -1+3n=1 | | 6(y+9)=2y-42 | | 9x(x-4)=-36 | | (6r-7)/1=r/4 | | -4=2x+2(x+4) | | -+-137=116-12x | | -25+7b=4b-1 | | 6(x+5)^2=0 | | (3x)(1x)=1625 | | 106=-8-6k | | -2(1/4)=r-4/5 | | 7(w-3)-5w=-13 | | 18x-9=5(2x+3) | | 3(4-x)=2(x+6) | | x+0.04x=3328 | | 2(3+x)=100 | | 2-8m=-6-12m | | 9x^2-24x=13 | | -3(x+7)=-2x-19 | | 5(2x-3)=3(x-19) | | F(x)=2x/3-15 | | 5n-2=-10+7n | | 5x^2+50x-68=-2 | | 14.2=14.2-x | | -6(x+4)=-42 | | 4(7x+6)=-4 |

Equations solver categories